
Quantitative Analysis of RuneScape 3 Combat

Akritiaa, Kyroha, Gamedolfc, and Sfoxc

a
author, c

contributor

January 5, 2024

RS Analysis, RS Math Discord, and The PvM Encyclopedia

Abstract

RuneScape Player versus Monster (PvM) encounters are fundamentally static. In most
cases, Non-Player Character (NPC) behavior is structured the same across all instances
of an encounter. Players execute predetermined sequences of abilities called rotations
which have been optimized for speed and consistency. The PvM Encyclopedia offers
publicly available rotations for every boss, although they are primarily human-generated
through trial and error. We propose that RuneScape can be solved and we explore the
potential of statistical methods to evaluate both individual actions as well as complete
rotations. Player-derived damage in a rotation can be interpreted as discrete random
variables with non-identical distributions. We find that the distribution of sequences of
abilities obtain Gaussian characteristics over time and show that sufficiently long rotations
can be approximated with a Gaussian Probability Mass Function (PMF). These methods
are useful for comparative analysis of existing rotations. However, we aim to transcend
intuition-based rotation optimization through reinforcement learning–and briefly examine
the mathematical landscape of solving stochastic Markov Decision Processes (MDPs) for
massively large spaces in the context of RuneScape combat.

“No one in the universe looks at RuneScape and says, you know what the most
appealing part of this game is? The damage formula that requires 3 Ph.D.’s
and a government research grant to understand.” –Stelaro

1

Contents

1 Introduction 5

2 Basic Combat Mechanics 5
2.1 The Combat Triangle . 5
2.2 Necromancy . 6

3 The Ability Damage Conjecture 6
3.1 Dissecting ability damage . 7
3.2 Ability damage equations . 7

4 Iterations of Damage Calculation 8
4.1 On-Cast . 8
4.2 On-Hit . 9

4.2.1 Damage per Level (DPL) . 10
4.2.2 Invention perks . 10

4.3 On-Npc . 10

5 Forced Auto-attacks 11

6 Critical Strikes 11

7 Ability Oddities 12
7.1 Corruption Blast/Shot Damage Over Time 12
7.2 Tendrils: Smoke, Shadow, Blood . 12
7.3 Crystal Rain (Seren Godbow Special Attack) 12
7.4 Bash . 13
7.5 Deadshot and Massacre . 13
7.6 Greater Ricochet . 14
7.7 Snap Shot . 14
7.8 Hurricane . 14
7.9 Perfect Equilibrium (Bow of the Last Guardian Passive) 14
7.10 Bleeds and Burns . 15
7.11 Shatter . 15

8 Statistical Understanding of Damage Values 15
8.1 Damage as Expected Value . 15
8.2 Variance and standard deviation . 15
8.3 Distributions of Single-Hit Abilities . 16
8.4 Distributions of Non-Deterministic Multiple-Hit Abilities 16

9 Approximating Damage Distributions 19
9.1 Gaussian Characteristics in Infinitely Long Rotations 19
9.2 Evaluating Convergence with Moments . 20

10 Comparative Rotation Analysis 21
10.1 Continuous case . 21
10.2 Discrete case . 22

2

11 The Dynamic Programming Approach 22
11.1 The Bellman Equation for Deterministic Sequences 23
11.2 Stochastic Markov Decision Processes . 24

11.2.1 Policy Iteration . 24
11.2.2 Policy Gradients . 25
11.2.3 Hypothetical Implementation . 25

12 Conclusions 26
12.1 Impending changes . 27

13 Acknowledgements 27

3

List of Figures

1 Omnipower tooltip . 7
2 Diagram of general damage stages . 8
3 pa(da) for combat triangle styles and Necromancy critical hit systems. . . 16

3a Combat triangle styles . 16
3b Necromancy . 16

4 Visual transformation of λa over 8 convolutions of rapid fire hits. 18
4a 1-Hit . 18
4b 2-Hit . 18
4c 3-Hit . 18
4d 4-Hit . 18
4e 5-Hit . 18
4f 6-Hit . 18
4g 7-Hit . 18
4h 8-Hit . 18

5 Visual convergence of pr(d) to a Gaussian pg(d) with each added ability.
Convergence is highly variable; for example, necromancy style abilities with
bi-modal distributions take much longer to converge than the combat tri-
angle styles. The convergence should be evaluated for the specific rotation
rather than universally applied after n hits. 21

List of Tables

1 Discrepancies in Ad between Equation (1) and data from the game. 8
2 An incomplete order of application of effects 11
3 Ability data . 20
4 Convergence of γr and κ′r . 21

4

1 Introduction

RuneScape is a massively-multiplayer online role playing game (MMORPG) published by
Jagex in 2001. Over the years, the game has changed substantially with frequent updates
to the skills, quests, and much more. Perhaps the most substantial update in the history
of RuneScape was the Evolution of Combat or “EOC” on November 20th, 2012[5]. EOC
established a fundamentally new framework for combat mechanics by introducing abilities,
adrenaline, and cool-downs. On the surface, the new combat system was relatively simple;
the different combat styles had books of abilities that could be cast with some outcome.
Casting an ability either generates or costs adrenaline and initiates a global cool-down
(GCD) where the player cannot cast most other abilities for a universal time frame. Under
the surface, this new combat system introduced a labyrinth of complex interactions that
players have tried to map out for the past 11 years.

RuneScape is hypothetically solvable, meaning perfect play is potentially achievable
unlike other real-time combat systems. This is primarily because of two constraints within
the game’s mechanical framework: The first is the “tick,” a 0.6 second time cycle that is
the minimum interval where the game state can change. Most games use a tick size that
are a fraction of this, but the comparatively larger tick size allows for a highly generous
margin of error for user inputs; second, the boss encounters are generally static in their
behavior–the mechanical pattern of a boss is the same between any two kills. Because of
these constraints, players can plan and execute a sequence of abilities–we refer to these
sequences as rotations–designed to complete a boss encounter in a game theory optimized
way. We aim to provide analytical methods that can be used for comparing currently
existing rotations and to give an overview of how dynamical programming can be used to
discover new optimal rotations.

2 Basic Combat Mechanics

Before showcasing the mathematics of rotation optimization we must first explore the
complex combat landscape of RuneScape to gain an understanding of the mechanical
framework of abilities, critical hits, and damage calculations. RuneScape’s combat sys-
tem revolves around four combat styles: magic, ranged, melee, and necromancy. The
combat triangle encompasses magic, ranged, and melee, sharing several commonalities,
while necromancy exists outside the combat triangle and is mechanically different from
the combat triangle styles. The player’s equipped main-hand weapon dictates their chosen
combat style, granting access to style-specific ability books.

2.1 The Combat Triangle

Within the combat triangle, abilities are categorized into three main types: basics, thresh-
olds, and ultimates. Basics serve as adrenaline-generating abilities, dealing minor damage
and occasionally featuring auxiliary effects such as damage boosts, critical strike chance
buffs, or stuns. Thresholds cost 15% adrenaline and require 50% adrenaline to cast; they
usually deal more damage than basics and can offer similar auxiliary effects. Ultimates
come at a high adrenaline cost, 100% as a baseline, but can be subject to cost reduc-
tions through various means. They often deal substantial damage or provide significant
duration-based auxiliary effects.

Abilities are the primary mechanism for dealing damage; in most cases, these abilities

5

are cast in intervals of three ticks, one GCD, although there are some instances where
that is not the case. For example, channeled abilities, abilities where each hit has a charge
time and if interrupted will cancel the remaining hits–frequently have cast times longer
than a GCD.

Abilities are not the only damage mechanism that exist within rotations. Two other
player-derived damage mechanisms include weapon specials (spec) and auto attacks (auto).
In most cases, weapon specs are mechanically similar to abilities wherein they are typi-
cally cast on GCD, deal damage, and cost an amount of adrenaline specific to the weapon
specs. Auto attacks are different; autos are cast at a frequency determined by the equipped
weapon when no abilities are cast and do not initiate a GCD.

2.2 Necromancy

Necromancy was released on August 7th, 2023, and is a fundamentally new mechanical
framework for RuneScape combat. There are a few distinctions to introduce before dis-
cussing the mechanical framework of the combat style. Necromancy is the first style to
scale to level 120, which is a considerable increase in base damage because level is one of
the core elements of ability damage. In addition, the skill gets considerably more value
out of percentage-based level boosts because of the higher level ceiling. Along the way to
level 120, players unlock progressive critical hit damage modifiers that act as the basis of
the new critical strike framework covered in detail in section 6.

There are three main player actions for necromancy: abilities, conjures, and incan-
tations. Unlike the combat triangle styles, every player action initiates a GCD, even
auto-attacks. Damage for necromancy is based on two largely independent operating
mechanisms: necrotic attacks and conjures. necrotic attacks are abilities categorized as
either basics, ultimates, or other that deal necromancy damage within a defined range.
The other abilities have distinct effects, damages, and adrenaline costs. Basics are also
quite different for necromancy because there is not a large selection of basic abilities to
create a unique basic rotation. Necromancy’s auto-attack functions as its main adrenaline
generating ability, all basic abilities do the same damage but with added auxiliary effects.
These effects create an interesting decision landscape for the player to find the highest-
value option in a given scenario.

The other damage mechanism within the necromancy style are conjures; they are
minions summoned by the player and fight alongside the player, dealing spirit damage,
which is not directly sourced by the player. The conjures continuously send their auto
attacks to the enemy target at a discrete frequency for the duration of the conjure. Each
conjure has a secondary activation that can have various effects.

Beyond direct damage mechanics, necromancy has a spellbook of incantations. Each
has a unique effect, granting some utility to the player for various combat scenarios.

3 The Ability Damage Conjecture

In RuneScape, the damage dealt by an attack is non-deterministic, meaning the hits are
randomly determined within a minimum and maximum bound. These ranges are denoted
on tooltips as a percentage derived from the base stat known as ability damage (Ad). For
instance, Omnipower, as depicted in Figure 1, inflicts damage ranging between 200% and
400% of Ad. RuneScape does not disclose the equations for calculating ability damage,
leaving players to speculate its formulation.

6

Figure 1: Omnipower tooltip

3.1 Dissecting ability damage

Through experimentation–likely involving swapping gear, weapons, or consuming potions–
players have discerned that Ad consists of three additive elements: level (l), damage tier
(t), and armour bonus (b).

Level (l) represents the boosted level derived from all currently active stat-boosting
effects in the combat skill for the associated worn weapon. Damage tier (t) is determined
by selecting the lower value between the equipped tier(s) of the player’s weapon(s) and any
associated ammunition’s (ammo) tier. In the context of magic, the term “ammo” refers
to spell tier, while for ranged combat, it pertains to bolt or arrow tier. The calculation
considers only the weapon tier for melee and necromancy, which do not require ammuni-
tion. The final component, armour bonus (b), is an aggregate value derived from all style
bonus attributes associated with the player’s currently equipped gear. These style bonus
values are displayed on equipment tooltips as “Damage Bonus.” The reaper crew passive
bonus is applied as an armour bonus and, for now, is the only non-equipment-based style
bonus in the game.

3.2 Ability damage equations

Each additive element, l, t, b, has a coefficient to modify the element’s weight on Ad. For
many years, players believed the Ad equations to be one of three functions depending on
worn weapon type where

Ad =

⌊2.5l⌋+ ⌊9.6t⌋+ ⌊b⌋ main-hand

⌊1.25l⌋+ ⌊4.8t⌋+ ⌊0.5b⌋ off-hand

⌊3.75l⌋+ ⌊14.4t⌋+ ⌊1.5b⌋ two-hand

(1)

Equation(1) correctly captures several fundamental truths of Ad. Namely, the damage
tier carries the most weight, followed by level and armour bonus. Furthermore, the sum
of the coefficients for main-hand and off-hand weapons equals the coefficients of two-hand
weapons, with two-thirds weighted on the main-hand. Applying these equations broadly,
some inexplicable discrepancies appear. As an example, Table 1 is one edge case we
discovered wherein Equation (1) produces results inconsistent with the in-game Ad.

We formulated various potential Ad equations and, for every iteration, performed tests
to uncover potential discrepancies between the output of the iterative equation and the
in-game value. More often than not, for a given iteration of the equations, there is a
particular set of parameters capable of producing a discrepancy. We eventually found
equations that appear to be consistent across all observable instances.

7

Table 1: Discrepancies in Ad between Equation (1) and data from the game.

Weapon(s) Eq.(1) Game
Tier 92 two-hand 1712 1712
Tier 92 dual-wield 1712 1713

AMagic
d =

⌊2.5l⌋+ ⌊9.6t+ b⌋ main-hand

⌊0.5 · (⌊2.5l⌋+ ⌊9.6t+ b⌋)⌋ off-hand

⌊2.5l⌋+ ⌊1.25l⌋+ ⌊14.4t+ 1.5b⌋ two-hand

(2)

AMelee
d =

⌊2.5l⌋+ ⌊9.6t+ b⌋ main-hand

⌊0.5 · (⌊2.5l⌋+ ⌊9.6t+ b⌋)⌋ off-hand

⌊2.5l⌋+ ⌊1.25l⌋+ ⌊9.6t+ b⌋+ ⌊4.8t+ 0.5b⌋ two-hand

(3)

ARanged
d =

⌊2.5l⌋+ ⌊9.6t+ b⌋ main-hand

⌊0.5 · (⌊2.5l⌋+ ⌊9.6t+ b⌋)⌋ off-hand

⌊2.5l⌋+ ⌊1.25l⌋+ ⌊9.6t+ b⌋+ ⌊4.8t1 + 0.5b⌋ two-hand

(4)

ANecromancy
d =

{
⌊2.5l⌋+ ⌊9.6t+ b⌋ main-hand

⌊0.5 (⌊2.5l⌋+ ⌊9.6t+ b⌋)⌋ off-hand
(5)

Note that t1 is the same as t, except when the ammo tier is 0. Then, t1 is based solely on
the tier of the weapon.

4 Iterations of Damage Calculation

RuneScape calculates damage through an iterative process where, at each step, the re-
sulting value is rounded down to a natural number. In most cases, a given iteration of the
damage calculation is the product of a damage effect and a base damage value wherein
the base damage value can be ability damage Ad, fixed and variable damage Af/Av, or
the damage roll d. If the damage effect applies to Ad directly, it is called on-cast; if it
applies to fixed and variable damage, it is called on-hit; and if it applies to the damage
roll that will be sent to the NPC, it is called on-NPC.

On-cast On-hit On-NPC
Ad A′

d

[
Af

Av

]
d

Figure 2: Diagram of general damage stages

4.1 On-Cast

If x1 is an on-cast multiplicative percentage damage boost, then the new iteration of Ad

can be calculated as:
A′

d = Ad + ⌊Ad · x1⌋ .

8

When there are multiple effects to be applied, x1 and x2, the calculation becomes

A′
d = Ad + ⌊Ad · x1⌋+ ⌊(Ad + ⌊Ad · x1⌋) · x2⌋,

the resulting change in ability damage for each effect is rounded down and added to ability
damage. Therefore, on-cast formulation can be thought of as an iterative process of Ad

calculation that can be abstracted to n effects

An = An−1 + ⌊An−1 · xn⌋ (6)

where An represents the nth iteration of Ad.

4.2 On-Hit

If an effect is on-hit, it applies to the fixed and variable damage portions independently.
Fixed damage, Af , is the minimum damage an ability can deal, calculated using the
minimum damage percentage of the ability af and the final ability damage A′

d where

Af = ⌊af ·A′
d⌋. (7)

Variable damage, Av, is the random damage an ability can deal and calculated as the
difference between minimum and maximum damage percentage, af and am, where

Av = ⌊(am − af) ·A′
d⌋. (8)

Let us take Omnipower from Figure 1 as an example when A′
d = 2000,

Af = ⌊2.0 · 2000⌋ = 4000,

Av = ⌊(4.0− 2.0) · 2000⌋ = 4000.

The proportionality of fixed and variable damage is important; in this case, f ∝ v = 1.
However, we find that in cases where f ∝ v = 1

4 , the fixed and variable damage is
calculated from a pseudo max hit mp instead of A′

d where

mp = ⌊am ·A′
d⌋,

Af = ⌊af ·mp⌋,
Av = ⌊(am − af) ·mp⌋.

(9)

General multiplicative percentage boosts are calculated in a peculiar way, the game uses
a base value of ε = 10000 then applies each effect in the process to that value. The nth

iteration of on-hit effects to ε is

εn = εn−1 + ⌊εn−1 · xn⌋, (10)

similar to on-cast effects. If ε′ is the final iteration of ε, meaning all effects have been
applied, then we obtain the final fixed and variable damage as

A′
f =

Af · ε′

10000
, (11)

A′
v =

Av · ε′

10000
. (12)

Most effects apply as expected, however, some formulations of on-hit are different.

9

1. Additive effects: Certain effects that apply during on-hit are additive instead of
multiplicative wherein the two additive effects, x1 and x2, would be calculated as
dn = dn−1 + ⌊dn−1 · (x1 + x2)⌋.

2. Damage over time (DoT) exclusion: DoT abilities are not impacted by on-hit
effects; they skip this calculation subsection entirely.

3. Fixed and variable damage differences: Some on-hit effects do not apply equally
to both fixed and variable. Some effects apply inversely, disproportionately, or skip
fixed or variable damage entirely.

4.2.1 Damage per Level (DPL)

Players discovered that abilities, at some point in the on-hit calculation, receive a flat
amount of damage per boosted level (DPL). Here, ∆b represents the number of currently
boosted levels. The equations are as follows:

A′
f = ⌊Af + (4 ·∆b)⌋,

A′
v = ⌊Av + (4 ·∆b)⌋.

DPL does not apply to Necromancy damages at all. Additionally, there are some instances
where the net 8× multiplier for boosted levels applies to either fixed or variable damage,
rather than split evenly between the two; those that are known are clarified in section 7.

4.2.2 Invention perks

The precise and equilibrium perks have an inverse relationship between fixed and variable
damage. Precise increases the minimum hit of an attack by 1.5% per rank r of the
attack’s maximum hit Am. Because the minimum hit is increased, without a maximum
hit increase, variable damage must be reduced by an equal amount; therefore

A′
f = Af + ⌊r · 0.015 ·Am⌋,

A′
v = Av − ⌊r · 0.015 ·Am⌋.

Similarly, equilibrium increases the minimum damage of an attack by three percent and
decreases maximum damage by one percent of variable damage,

A′
f = ⌊Af + r · 0.03 ·Av⌋,

A′
v = ⌊Av − r · 0.04 ·Av⌋.

For now, these are the known idiosyncrasies of on-hit formulation.

4.3 On-Npc

For effects that are on-npc, the application of effects is to one damage value d, which
represents the sum of Af and a random damage amount ∼ U [0, Av], where U [a, b] is a
uniform distribution with equal probability of sampling values between a and b. In the
same manner as on-cast, the nth iteration of on-NPC multiplicative boosts can be can be
calculated as:

dn = dn−1 + ⌊dn−1 · xn⌋. (13)

10

Table 2: An incomplete order of application of effects

On-cast On-hit part 1 On-hit part 2 on-npc
Chaos roar Arrow effects Dominion tower gloves Kerapac’s wristwraps

↓ ↓ ↓ ↓
Hex hunter DPL Melee bane weapons Vulnerability

↓ ↓ ↓ ↓
Greater sonic wave Pernix quiver Slayer helm Smoke Cloud

↓ ↓ ↓
Additive effects Fort Forinthry guardhouse Gloves of Passage (bleed)

↓ ↓ ↓
Prayer Genocidal X Slayer Perk
↓ ↓ ↓

Damage boosting ultimates Salve amulet X Slayer Sigil
↓ ↓ ↓

Exsanguinate Ripper claw Aura boost & Metamorphosis
↓ ↓ ↓

Revenge Ripper passive Scrimshaws
↓ ↓

Spendthrift Precise
↓ ↓

Ruthless Equilibrium

5 Forced Auto-attacks

Auto-attacks from the player within the combat triangle originate from the legacy combat
system and occur at a frequency derived from the equipped weapon attributes if uninter-
rupted by ability inputs. Auto-attacks have a Af = 1 and Av = Wd, where Wd is the
weapon damage value of the equipped weapon. They are subject to the same damage
modifiers as abilities are.

For any combat triangle style, auto-attacks can be forced by clicking the target while
casting an ability immediately following any non-damaging ability. Players have also
discovered a more lucrative way to force these auto attacks using the different attack
frequencies of weapons. Because magic autos can be cast by player input, there is a
method to weave in auto attacks at the cost of one game tick. By switching between
dual-wield and two-hand weapons every other ability cast, a two-hand auto which is more
powerful than a dual-wield auto, can be cast on the fourth tick of every other GCD. This
method is called four tick auto attacking (4TAA) where the foundational attack structure
is Auto + ability → 3 ticks→ dual-wield ability → 4 ticks→ Auto + ability.

6 Critical Strikes

RuneScape’s combat system, like many other RPGs, has a probabilistic critical hit system.
In the current state, critical strikes can manifest through forced or natural means. Within
the combat triangle, critical hits have a higher hit cap than non-critical hits. Forced critical
hits are rolled before the natural damage roll, and the forced critical hit probability is
determined by the sum of all critical hit chance boosting effects. When a forced critical
strike occurs, the damage range of the ability is set to the following interval

dcombat triangle
forced = A′

f + U [⌊0.95 ·A′
v⌋, A′

v]. (14)

The other critical hit mechanism is natural critical hits that occur when the player
fails to get a forced critical hit, but the damage roll (dr) is such that

11

dr ≥ ⌊0.95 · (Am)⌋. (15)

The hit is then subject to the same critical strike effects as forced critical strikes.
Necromancy critical strikes are mechanically different from the combat triangle styles.

There is a base forced critical hit chance P (f) = 0.10 with no mechanism for natural
critical hits. The damage roll and forced critical hit roll occur independently; when a
forced critical hit is rolled, the damage of the critical strike df then is given by

dNecromancy
forced = ⌊dr · Cd⌋, (16)

where dr is the value determined by the damage roll, and Cd is the associated critical hit
damage modifier. This system significantly impacts the shape of the damage distribution
of necromancy abilities, further discussed in section 8.

7 Ability Oddities

There are widespread idiosyncrasies in RuneScape’s combat landscape, we will briefly
discuss all of those of which we are aware.

7.1 Corruption Blast/Shot Damage Over Time

The tool tip states that it deals 33% to 100% Ad, reducing by 20% per hit following the
initial hit. We find the mechanics to be that the last hit is rolled (6.6% to 20% Ad) and
is then multiplied by a scalar to determine the nth hit.

7.2 Tendrils: Smoke, Shadow, Blood

The Ad percentage is a function of the damage dealt to the player and then uses a scalar
to determine the hit. Shadow and Smoke tendrils get the full DPL bonus on fixed damage,
which is believed to have something to do with the fact that they always land as a critical
hit when damage-boosting prayer is active or levels are boosted.

7.3 Crystal Rain (Seren Godbow Special Attack)

Assuming one hundred percent hit chance, the first arrow of the Seren Godbow (SGB)
special attack, Crystal Rain, will always hit the target and the damages are calculated
as any other hit. The intricacies lie within the auxiliary arrows grid style area of affect
(AOE) and the decaying variable damage. First we must show how NPC centering works,
an NPC can be thought of as an n×n matrix where the center for odd n is the true center
(C) and for even n is the southwest tile of the 2× 2 grid in the center of the matrix. The
□ are the rest of the tiles occupied by the NPC. If An is an n× n matrix the centers for
n = 5 and n = 4 are as follows:

A5 =

□ □ □ □ □
□ □ □ □ □
□ □ C □ □
□ □ □ □ □
□ □ □ □ □

A4 =

□ □ □ □
□ □ □ □
□ C □ □
□ □ □ □

12

The center of an NPC is chosen and the radius is calculated as the floor of half of the NPC
size. A square within the radius from the center of the NPC is chosen as the center of the
special attack. A 5×5 area centered at that square is where the remaining four arrows will
be chosen. A random square is chosen from this area, and then random squares chosen,
without duplicates, until there are four arrows, or when it fails to find a non-duplicate ten
times. The number of squares chosen that also lie on the NPC squares are the number
of arrows that hit. Using the same examples as above, s marks the tiles that can be
randomly determined as the center of the crystal rain matrix and �s are those which are
non-NPC tiles.

A5 =

s s s s s
s s s s s
s s Cs s s
s s s s s
s s s s s

A4 =

�s s s s s

�s s s s s

�s s Cs s s

�s s s s s

�s �s �s �s �s

Now let’s say that ⊙ is the center of the crystal rain matrix, ⊖ are non-NPC crystal rain
tiles, ⊕ are NPC and crystal rain tiles, and □ are unaffected NPC tiles.

A5 =

□ □ □ □ □
⊖ ⊕ ⊕ ⊕ ⊕ □
⊖ ⊕ ⊕ ⊕ ⊕ □
⊖ ⊕ ⊙ ⊕ ⊕ □
⊖ ⊕ ⊕ ⊕ ⊕ □
⊖ ⊖ ⊖ ⊖ ⊖

A4 =

□ □ □ □
⊖ ⊖ ⊕ ⊕ ⊕ □
⊖ ⊖ ⊕ ⊕ ⊕ □
⊖ ⊖ ⊙ ⊕ ⊕ □
⊖ ⊖ ⊖ ⊖ ⊖
⊖ ⊖ ⊖ ⊖ ⊖

When an arrow lands on a tile in the crystal rain matrix, higher-order arrows can no
longer land on that tile. Regarding the damage calculation of the arrows themselves, the
variable damage of each additional arrow after the first decays such that the kth arrow is
calculated as

Afk = Af1 ,

Avk =

⌊
max(0, 8− k)

3
·Af1

⌋
.

Auxiliary arrows from multi-source SGB casts that are 8 arrows or higher have zero
variable damage[10].

7.4 Bash

The tooltip states that it deals additional damage equal to 10 percent of your shield’s
armour value plus defence level. It in fact does not take 10 percent of anything and
instead calculates damage as

Af = ⌊0.2 · (Ad + ld + s)⌋,
Av = ⌊0.8 · (Ad + ld + s)⌋,

where ld is defence level and s is shield armour value.

7.5 Deadshot and Massacre

The damage over time portion of these abilities is equal to ⌊mp

3 ⌋, where mp is the pseudo
max hit of the initial hit. It is still affected by on-npc effects.

13

7.6 Greater Ricochet

The primary hit of Greater Ricochet is calculated as any other ability with f ∝ v = 1
4 .

The secondary (f2, v2) and tertiary (f3, v3) hits have

f2 =

⌊
f1
2

⌋
,

f3 =

⌊
f2
2

⌋
,

v2 =
⌊v1
2

⌋
,

v3 =
⌊v2
2

⌋
,

where f1 and v1 are the fixed and variable values of the first hit after all on-hit boosts
have been applied. All hits roll separately and have on-npc effects applied separately.

7.7 Snap Shot

The variable damage of the second hit of Snap Shot is calculated as scaled damage of the
hit one variable damage[11].

f2 = f1,

v2 = ⌊1.1 · v1⌋.

7.8 Hurricane

For the second hit of Hurricane, DPL is calculated as

f ′2 = f2 +

⌊
10 · v2

v1
·∆b

⌋
,

v′2 = v2 + ⌊2 ·∆b⌋,

then precise is calculated as

f ′′2 = f ′2 +

⌊(
1 +

v′1
f ′1

)
· f ′2 · 0.015 · r

⌋
,

v′′2 =

⌊
v′2
v′1
· v′′1
⌋
.

The calculation then proceeds as normal[9].

7.9 Perfect Equilibrium (Bow of the Last Guardian Passive)

The minimum damage for the hit derived perfect equilibrium (PE) proc is 25 percent
rather than 35 as stated on the tool-tip. For the perfect equilibrium proc itself, different
effects are calculated differently depending on the stage that they apply. If the calculation
happens pre-DPL it applies to the ability damage derived damage amounts and the hit
derived damage amounts independently whereas post-DPL effects it applies to the com-
bined fixed and combined variables damage portions[14].

14

7.10 Bleeds and Burns

Combust, Fragmentation Shot, Dismember, and Slaughter all roll a value between 1 and
mp and take the max between that roll and the minimum damage percent of the ability.
The result is that these bleeds will min roll on average min%

max% of casts.

7.11 Shatter

Fixed damage gets the full DPL bonus, similar to tendrils, we believe the guaranteed
critical hit is a side effect of this.

8 Statistical Understanding of Damage Values

In this section, we delve into a statistical analysis of damage values in RuneScape, focusing
on understanding the nuances and complexities of damage calculation. Our analysis aims
to demystify these calculations, clarifying how different elements interact and contribute to
the final damage figures observed in gameplay. We explore several key aspects, including
the expected value of damage, variance and standard deviation, and the distribution
patterns of single-hit and multi-hit abilities. By dissecting these components, we aim
to comprehensively understand damage mechanics, the underlying mathematics, and the
practical implications.

8.1 Damage as Expected Value

The average damage of an ability µa is calculated as the weighted mean of the damage
range as opposed to the average between min and max hit because of the weight of forced
critical hits. The weighted mean µa of an ability a is the expected value given by:

µa = E[a] =
∑
da∈a

da · P (da), (17)

where da represents a possible damage value in the domain of a and P (da) is the probability
of the damage value occurring. When discussing RuneScape hits, µa, E[a] weighted
mean, expected value, or expected damage all describe the exact same value derived from
equation (19). The expected damage of multi-hit abilities is represented as the sum of the
expected damage for the individual hits µh:

µa =
∑
i

µhi

Expected damage should not be interpreted literally; players cannot cast an ability and
expect it to deal µa damage because it does not capture the variability of potential out-
comes. Two abilities with equal µa could have very different distributions and are most
appropriately evaluated by calculating variance and standard deviation.

8.2 Variance and standard deviation

Variance σ2 indicates how much the damage values of ability are expected to deviate from
the average damage µa. For an ability a, the variance is calculated as:

σ2 =
∑
da∈a

(da − µa)2 · P (da)

15

where da is a possible damage value, µa is the weighted mean of the damage, and P (da)
is the probability of that damage occuring. The standard deviation σ is the square root
of the variance

√
σ2 and provides a more intuitive measure of variability because it is in

the same units as the damage itself.

8.3 Distributions of Single-Hit Abilities

The damage roll of a single hit ability is discrete and uniform; any damage value in
a particular domain is equally likely to occur. The most appropriate way to present
this mathematically is to say that the damage of an ability can exist within two domains–
λnatural for a natural roll and λforced for a forced critical strike. There may also be instances
of a third domain where the damage value can occur as either a natural roll or a forced
critical hit in which the probability of its likelihood is the sum of the two probabilities.
The probability mass function (PMF) of an ability pa(da) then would be

pa(da) =

P (natural) · λ−1

natural da ∈ λnatural and da /∈ λforced
P (natural) · λ−1

natural + P (forced) · λ−1
forced da ∈ {λnatural, λforced}

P (forced) · λ−1
forced da /∈ λnatural and da ∈ λforced

0 da /∈ {λnatural, λforced}

(18)

The distribution produced by the PMF in equation (20) for a combat triangle style and
necromancy are very different by virtue of the necromancy critical hit mechanics. The
distributions of a hypothetical single hit ability for both damage systems are shown in
Figure 3.

400 600 800 1000 1200 1400
Damage

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

De
ns
ity

(a) Combat triangle styles

1000 1200 1400 1600 1800 2000 2200 2400
Damage

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

0.0012

0.0014

0.0016

De
ns
ity

(b) Necromancy

Figure 3: pa(da) for combat triangle styles and Necromancy critical hit sys-
tems.

8.4 Distributions of Non-Deterministic Multiple-Hit Abili-
ties

For channeled abilities, the hits [h1, h2, h3, · · ·hn] are rolled independently. The weighted
average µ, standard deviation σ, and the PMF p(a) of a specific hit are calculated using
the same methods as single hit abilities–they are mechanically identical. The weighted
average across all hits of the channeled ability is the sum of the weighted averages for

16

each hit, the standard deviation is the square root of the sum of individual variances, and
the PMF pa is the convolution of the individual PMFs[8]. A channeled ability with two
hits ax and ay has a distribution produced by the convolution of the PMFs (px(x)∗py(y))
defined as:

p(a) = px(x) ∗ py(y) =
∞∑

k=−∞
px(k)py(a− k) (19)

Instead of performing convolution on the PMFs for each hit, we can evaluate the proba-
bility vectors produced by the PMFs px = [p1, p2, p3, · · · , pn] and py = [p1, p2, p3, · · · , pn].
Utilizing the Convolution theorem of the Fourier Transform, the Discrete Fourier Trans-
form (DFT) for our vectors is defined as:

p̂x(ξ) =
N−1∑
n=0

pxe
−i(2π

N
)ξpn

p̂y(ξ) =
N−1∑
n=0

pye
−i(2π

N
)ξpn

Then p̂a is the product of p̂x and p̂y, we can the find the probability vector for pa as the
Inverse Discrete Fourier Transform(IDFT) of p̂a

pa =
1

N

N−1∑
k=0

p̂a(ξ)e
i(2π

N
ξpn)

The resulting vector pa is the probabilities of the damage vector λa for a two-hit ability.
The probability vector for a k hit ability is calculated by recursively performing these
Fourier transforms for the resulting vector and the next hit.

17

200 300 400 500 600 700 800 900 1000
Damage

0.000

0.002

0.004

0.006

0.008

De
ns
ity

(a) 1-Hit

400 600 800 1000 1200 1400 1600 1800 2000
Damage

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

De
ns
ity

(b) 2-Hit

500 1000 1500 2000 2500 3000
Damage

0.0000

0.0002

0.0004

0.0006

0.0008

0.0010

De
ns
ity

(c) 3-Hit

1000 1500 2000 2500 3000 3500 4000
Damage

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0.0008

De
ns
ity

(d) 4-Hit

1000 1500 2000 2500 3000 3500 4000 4500 5000
Damage

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

De
ns
ity

(e) 5-Hit

1000 2000 3000 4000 5000 6000
Damage

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

De
ns
ity

(f) 6-Hit

2000 3000 4000 5000 6000 7000
Damage

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

De
ns
ity

(g) 7-Hit

2000 3000 4000 5000 6000 7000 8000
Damage

0.0000

0.0001

0.0002

0.0003

0.0004

0.0005

De
ns
ity

(h) 8-Hit

Figure 4: Visual transformation of λa over 8 convolutions of rapid fire hits.

18

9 Approximating Damage Distributions

The damage distributions for independent channeled ability hits are mechanically identical
to single-hit abilities. Therefore, the PMF of n abilities we add to a rotation r can similarly
be evaluated using Fourier transforms. However, convolution runs in log-linear time, which
grows considerably as the rotation length increases. A viable alternative when analyzing
long rotations is to approximate the damage distribution.

9.1 Gaussian Characteristics in Infinitely Long Rotations

Let us observe what happens to the distribution when the rotation length becomes in-
finitely long. Suppose r is a rotation of one ability a normalized such that.

r =
1

σa
√
n

n∑
k=1

(ak − µa)

By virtue of the central limit theorem (CLT), we expect the convergence of r to be
normally distributed, N(0, 1). A standard proof of classical CLT utilizes the characteristic
function for the ability defined as the Fourier transform of its PMF[6].

ϕa(t) =

n∑
k=1

eitakpak = E[eitak]

Recall that the Fourier transform of pr is equal to the product of the Fourier transform
of each pak as discussed in section 8. The characteristic function shares this relationship.
If all ak are identical, then

ϕr

(
t√
n

)
=
(
E
[
e
i t√

n
a
])n

Using Taylor’s theorem for the polynomial expansion of e
i t√

n
a

E
[
e
i t√

n
a
]
= E

[
1 + i

t√
n
a− t2

2n
a2 + . . .

]
The higher-order terms become negligible as n→∞ therefore

ϕr

(
t√
n

)
=
(
E
[
e
i t√

n
a
])n
≈
(
E

[
1 + i

t√
n
a− t2

2n
a2
])n

=

(
1 + iµa

t√
n
− t2

2n
σ2a

)n

=

(
1 + i(0)

t√
n
− t2

2n
(1)

)n

=

(
1− t2

2n

)n

lim
n→∞

ϕr

(
t√
n

)
=

(
1− t2

2n

)n

= e−
t2

2

Indicating that a rotation comprised of infinitely many casts of the ability a converges
approximately toN(0, 1). Continuously casting a single ability is far from optimal; in most

19

circumstances, we look at non-identically distributed variables. A requisite parameter of
classical CLT is that the independent variables are identically distributed[6]. However, we
find that non-identically distributed abilities in RuneScape converge similarly to identical
distributions[2]. The convergence of ϕr(t) to the Gaussian form in the non-identical case
can be evaluated by checking Lyapunov’s condition that requires for some δ > 0

lim
n→∞

1

σ2+δ
r

n∑
j=1

E
[∣∣aj − µaj ∣∣2+δ

]
= 0 (20)

, where E
[∣∣aj − µaj ∣∣k] gives the kth raw moment of the distribution[6]. For RuneScape

rotations, we evaluate Lyapunov’s condition at δ = 1 and δ = 2, which calculate skew
and kurtosis, respectively. High-order statistics for δ > 2 are not considered because
rotations have relatively simple shape parameters and lack the excess degrees of freedom
for precise approximations. The 3rd and 4th standardized moments of a Gaussian are zero,
and therefore, to confirm the convergence of a rotation to a Gaussian, we expected these
order statistics to approach zero.

9.2 Evaluating Convergence with Moments

Given the conditional behavior of pr in the limit n→∞, we can instantiate Gaussian ap-
proximations for sufficiently small skew γ and kurtosis κ, thereby avoiding the complexity
of convolution[4]. We utilize the moment generating function (MGF) of r where

ψr(t) = E[etr] =
∑
ri

etripr(ri) (21)

Skewness γ and kurtosis κ are the third and fourth derivatives of the MGF, respectively,
evaluated at t = 0.

γr =
...
ψ r(t)

∣∣∣∣∣
t=0

κr =
....
ψ r(t)

∣∣∣∣∣
t=0

The raw moment for kurtosis in a true Gaussian is three, which is standardized by sim-
ply subtracting three to obtain excess kurtosis (standardized moment) κ′ of zero[4]. For
example, let us calculate the convergence of a rotation r when it comprises Greater Con-
centrated Blast → Wild Magic → Auto + 3-hit Asphyxiate where Ad = 2000, Wd = 1000,
and P (f) = 0.318. Note that Greater Conc. increases critical strike chance per hit, so the
averages of the later hits of the ability and the first hit of Wild Magic have more skew than
the other hits. Using the values in Table 2, we can evaluate the convergence of γr and

Table 3: Ability data

Ability Minimum Maximum µ σ
Greater Conc. 1068 5340 3957.90 801.35

Wild Magic 2000 8600 6532.06 1499.60
Auto 0 1000 651.05 325.50

3-hit Asphyx. 2256 11280 8130.79 1695.06

20

Table 4: Convergence of γr and κ′
r

Hit γr κ′
r

Greater Conc. -0.38 -0.36
Wild Magic -0.37 -0.31

Auto -0.35 -0.29
Asphyxiate -0.23 -0.17

κ′r between the true PMF and the Gaussian approximation with each additional hit. As
shown by the results in Table 4, γ and κ′ are strictly decreasing. The exact moment that
these measurements have become sufficiently close to zero for a Gaussian approximation
is largely determined by the desired degree of accuracy of the user. Regardless, we can
examine this convergence visually in Figure 5.

0 5000 10000 15000 20000 25000

0.0

0.2

0.4

0.6

0.8

1.0 greater conc
wild magic
auto
asphyxiate
Gaussian

Figure 5: Visual convergence of pr(d) to a Gaussian pg(d) with each added
ability. Convergence is highly variable; for example, necromancy style abili-
ties with bi-modal distributions take much longer to converge than the com-
bat triangle styles. The convergence should be evaluated for the specific
rotation rather than universally applied after n hits.

10 Comparative Rotation Analysis

10.1 Continuous case

We can utilize the Gaussian approximations established in the previous section to evaluate
the damage output of a nested rotation. For example, if a player designed a rotation and
wants to know how likely they are to hit some damage threshold, we calculate it using a
continuous cumulative distribution function[3]. Assume that this rotation rx has a damage
vector λx where ψx produced γx = 0.05 and κ′x = 0.04. Given that the skewness γx and
excess kurtosis κ′x for rotation x are close to zero (indicating a near-Gaussian distribution),

21

we can assume a Gaussian distribution with mean µx and standard deviation σx. The
probability density of a particular damage value is given by the PDF px

px(dx) =
1

σx
√
2π
e
−
(

dx−µx
2σx

)2

(22)

Furthermore, the probability of dealing at least n damage can be evaluated as

Px(dx ≥ n) = 1− Φx(n)

where dx is a particular damage value in λx and Φx is the cumulative distribution function
(CDF) of rx defined as

Φx(n) =

∫ n

−∞
px(t)dt (23)

Using these methods, we can also analyze the comparative damage output of two rotations,
rx and ry. The probability that dx > dy is determined by the difference between their
respective Gaussian distributions. Let rx and ry be two rotations with means µx, µy and
standard deviations σx, σy, respectively. The random variable dz = dx − dy represents
the damage difference between the two rotations. Since rx and ry are assumed to be
independent and Gaussian, rz is also Gaussian with mean µz = µx − µy and variance
σ2z = σ2x + σ2y . Thus, the probability that dx exceeds dy (dz > 0) can be computed using
the cumulative distribution function (CDF) of rz evaluated at zero

P (dz > 0) = 1− Φz(0) = 1−
∫ 0

−∞

1

σz
√
2π
e
− (t−µz)

2

2σ2
z dt

10.2 Discrete case

In many instances, a player may want to evaluate the effectiveness of shorter rotations–
only a few abilities in length–which would require the calculation of the discrete PMF
rather than the continuous Gaussian approximation. In the discrete case, a rotation rx
has a damage vector λx = [x1, x2, . . .] with probability p(xi). The CDF then would be

Φx(dx) = P (dx ≥ n) =
∑
xi≥n

p(xi) (24)

Like the continuous case, the probability of one rotation outdamaging another is given by
the difference dz = dx − dy evaluated using the discrete CDF Φz for dz ≥ 0. Comparing
the raw damage distributions for rotations is most valuable when they have similar time
intervals. For more nuanced analysis, alternative measurements such as damage per tick
(dividing damage by the rotation length in ticks) or damage per adrenaline can be con-
sidered.

11 The Dynamic Programming Approach

The rotation analysis in section 10 details how we can quantitatively assess the compara-
tive damage output of different rotations. We can improve the rotations with some basic
heuristics, however, we do not have any empirical evidence that a rotation is the most
optimal option.

22

11.1 The Bellman Equation for Deterministic Sequences

Finding the optimal sequence of actions starts with a brute force approach where a given
state xt is solely determined by the action at of the xt−1 state. For RuneScape a state
would be the status of target’s remaining lifepoints, abilities on cooldown, and any other
parameters specific to single point in time. Let us start with a simple deterministic
landscape where we have three abilities [a1, a2, a3] with the following parameters

Ability Damage Cooldown

a1 10 0
a2 15 1
a3 20 2

The cooldown denotes the number of states that must pass before an ability can be cast
again. The Bellman equation helps us evaluate each potential action’s utility relative to
each state’s advantage or disadvantage[1].

V (xt) = maxa(U(xt, at) + βV (x′)) (25)

Where V (xt) is the value function, U(xt, at) is the reward gained by taking an action at in
a state xt, and βV (x′) is the β discounted utility of V (xt+1). When U(xt, at) = 1, there
is an action at in a given state xt capable of bringing the sequence to the terminal state,
otherwise U(xt, at) = 0. We start with a tree of all state-action pairs and use backward
induction to compute the utility gained from each action in the state xt[1]. If we reach
the terminal state when the sum of the damage dealt by all abilities is at least 50, then
we obtain:

x1

a1 a2 a3

a1 a2 a3 a1 a∗3 a1 a2

a1 a∗2 a∗3 a∗1 a∗3 a∗1 a∗2 a∗1 a∗2 a∗3 a∗1 a∗2 a∗1

a∗1 a∗2 a∗3

where ∗ represents a terminal state. For a discount factor β = 0.9 the utility of the actions
across all xt would be

x1

0.81 0.9 0.81

0.81 0.9 0.9 0.9 1 0.9 0.9

0.9 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1

23

The optimal ability rotation, in this example, would be a2 → a3 → a2 because those
actions yield the highest utility in each state transition. We can verify these actions in
the diagram because it is the shortest path to a terminal state. This method, called value
iteration, uses the value function to iterate over all states and extract the optimal rotation.
RuneScape combat is much more complex than this; many probabilistic elements produce
a vector of possible states for each state-action pair. We call these complex random state
spaces Stochastic Markov Decision Processes (MDPs).

11.2 Stochastic Markov Decision Processes

The problem of solving an MDP for a RuneScape rotation is the exponentially large
number of possible rotations. For massive or infinite state-action spaces, we can use
policy-based reinforcement learning methods wherein we start with some arbitrary policy
and make iterative improvements, meaning that we are only computing actions fixed by
the policy[12]. Policy in the context of RuneScape would be the ability rotation, including
every action the player takes tick by tick for the duration of the encounter.

11.2.1 Policy Iteration

In order to carry out policy iteration, we first must establish how to evaluate and improve
a policy. The value function of some arbitrary policy π from an action xt, V

π(xt), is similar
to the deterministic case, but rather than the beta discounted utility of the x′t state, we
use the expected value across all possible state sequences defined by the policy[12].

V π(xt) =
∑
x′
t∈X

Pπ(xt)

(
x′t|xt

) [
U(xt, a, x

′
t) + βV π(x′t)

]
V π(xt) = 1 for terminal states, meaning the probability of the target dying to the next
action is 1. If we have a policy V π(xt) that is not the optimal policy, we can make incre-
mental improvements by changing actions. We will need the state-action value function,
also called the Q-function Qπ(xt, a), that yields the expected value of an action a–instead
of the policy action–and then following the policy π(xt) from that point forward.

Qπ(xt, a) =
∑
x′
t∈X

Pa

(
x′t|xt

) [
U(xt, a, x

′
t) + βV π(x′t)

]
If there exists an action a where the Q-function of a is greater than strictly following the
policy π(xt), Q

π(xt, a) > Qπ(xt, π(xt)), then the policy is strictly improved by adopting a
to the policy π(xt), written as π(xt)← a[12]. Policy iteration is then an iterative process
to extract the optimal policy by calculating V π(xt) for all xt using policy evaluation.
Then, for each state in the space, xt ∈ X, we adjust the policy π by iteratively checking
each possible action in each possible state and adopting the action to the policy if it
improves the value of the Q-function. Written as:

π(xt)← argmaxa∈A(xt)Q
π(xt, a)

Although policy iteration is more cost-effective than value iteration–because there are
finite iterations–each iteration has an exponential cost, which does not scale for sufficiently
large spaces. Like the Gaussian approximations established in section 9, an effective
alternative is to approximate the optimal policy using policy gradients[13].

24

11.2.2 Policy Gradients

The fundamental idea of a policy gradient method is to optimize the parameterized policy
πθ(xt, at) to maximize the expected return[13]. The objective function, denoted as J(θ),
represents the expected value of the cumulative rewards obtained by following the policy
parameterized by θ:

J(θ) = E[V πθ(xt, at)]

To improve the policy πθ(xt, at), we compute the gradient of this objective function with
respect to the parameter θ. The goal is to adjust the parameters to increase the expected
return over time. The gradient ascent update rule is typically employed:

θ ← θ + α∇J(θ)

Where α is the learning rate, a hyperparameter that controls the size of the θ parameter
updates. ∇J(θ) is the gradient of the expected return with respect to θ. The key challenge
in policy gradient methods is estimating this gradient accurately. One common approach
is the REINFORCE algorithm, which uses a likelihood ratio trick[13]. The gradient of
J(θ) can be expressed as:

∇J(θ) = E

[
T∑
t=0

∇ log πθ(xt, at) ·

(
T∑

t′=t

Ut′

)]

Where ∇ log πθ(xt, at) is the gradient of the log-probability of taking action at in state xt
under policy πθ. Ut′ represents the cumulative reward obtained from time step t to the
end of the episode, which is used as a baseline. This gradient is approximated through
multiple episodes by collecting trajectories and computing sample averages. The resulting
update rule becomes:

θ ← θ + α
1

N

N∑
i=1

(
Ti∑
t=0

∇ log πθ(x
(i)
t , a

(i)
t) ·

(
Ti∑
t′=t

U
(i)
t′

))

Here, N is the number of sampled trajectories, and Ti is the trajectory length in the ith

episode. In the context of RuneScape, we can utilize the update rule to approximate
the policy gradient and extract the optimal behavior strategy for a player to defeat an
encounter in the most time-efficient manner.

11.2.3 Hypothetical Implementation

The implementation of solving an MDP within RuneScape’s combat framework presents
significant challenges due to the inherent complexity of the problem. While policy iteration
is more straightforward conceptually, it can become prohibitively expensive. Constructing
a model that attempts to solve the space with policy gradient methods is undoubtedly the
most appropriate for the combat landscape in which we operate. Although constructing
the model falls outside the scope of this project, there are a number of obstacles that we
have ideas about how they may be overcome.

On the construction of the state space and transitions, for a given policy, we suggest
that the time interval t when considering possible states xt and possible actions at be ticks
as opposed to a GCD. Even though the state space becomes much larger, it is the most
appropriate way to accommodate 4TAA, channeled canceling, hit timings, and other off-
GCD actions. Possible actions at for off-GCD states is often nothing so the considerably

25

smaller time interval does not have as much of an impact as one might think. The state
transition probabilities must be modeled in such a way to accommodate the non-linearity
of damage and adrenaline changes–even though damage is generally uniform, there are
various complexities that introduce non-linearity. The solution then would be to use some
form of Gaussian quadrature to approximate the integrals for each state-action transition
distribution.

In terms of the policy gradient methods, an actor-critic implementation would likely
be most successful because bootstrapping could be used to avoid sampling the full tra-
jectory like traditional Monte-Carlo methods[7]. The critic helps guide the actor towards
making better updates to the policy than a pure policy-based method resulting in lower
variance and faster convergence. The main obstacle of an actor-critic model is creating a
computationally efficient value function approximation. Konda and Tsitsiklis propose a
method by which the critic creates projections of the value function from linearly param-
eterized approximations of the value function using orthogonal polynomials which could
theoretically work in this landscape[7].

Our suggestion in terms of practical implementation is to explore actor-critic reinforce-
ment learning methods and the various approximations that can be implemented to make
the problem computationally approachable. Finally, we want to note that even though
this is the most accurate way to approach the problem, someone could likely get to 95%+
of optimal with a simple Gaussian approximation of the damage distribution, a set of
abilities, and a neural network.

12 Conclusions

Since the release of EOC, RuneScape players have progressively pushed the boundary of
player understanding of the mechanical underpinnings of the combat system. Our research
delves into the game’s complex combat system, disclosing the many of the inherent quirks
of the game before exploring the various mathematical methods that can be used to
formulate optimal play. We start with the basics from the Evolution of Combat update
and explore the nuances of abilities, special attacks, and autos in the combat triangle and
necromancy.

A large part of our research evaluates ability damage, revealing how level, damage tier,
and armor bonus factor into the damage calculation (Ad). We explore the iterative process
through which damage is calculated, including of on-cast, on-hit, and on-npc effects. We
also examine the probabilistic nature of damage ranges, highlighting the importance of
understanding damage probability distributions for various abilities. We demonstrate how
Gaussian approximations and high-order statistics can help track damage distribution
changes for increasingly long rotations.

Additionally, we investigate using Markov Decision Processes (MDPs) and policy-
based reinforcement learning for the creation of optimal ability rotations. This includes
basics of policy iteration and gradients, and the challenges of solving MDPs in massively
complex state spaces like RuneScape. In summary, our research provides a thorough
analysis of RuneScape’s combat system, combining mathematical modeling with practical
gameplay. This work is a testament to the depth of RuneScape’s combat mechanics
and serves as a guide for players and researchers interested in the mathematical and
computational elements of game optimization.

26

12.1 Impending changes

Since we began our research, the combat landscape has changed significantly. The game
announced and released the Necromancy skill, a rework of many damage effects and
mechanical changes. During the last few months leading up to the publication of our
research, RuneScape announced the combat beta. At this time, the beta is in its second
update phase, and we anticipate that many of the changes will be pushed to the live game
quickly. Therefore, the final thing we would like to do here is provide an overview of what
we expect to change soon.

• Necromancy mechanics - The new critical hit mechanics introduced by the release of
necromancy are almost certainly going to be adopted by the other styles. One side
effect of this system is that every ability and special attack needs damage squishing
between the minimum and maximum range so that the minimum critical hit is higher
than the maximum natural roll.

• DPL Removal - Necromancy does not get a DPL boost, and along with the Necro-
mancy mechanics change, the combat triangle styles similarly will see the removal
of DPL.

• Equilibrium - This will likely change again because the current tuning is slightly low.
Regardless, as a result of damage squishing equilibrium became effectively useless.
The current proposal is to give a flat 4% damage boost per rank–applied during
on-hit–at the cost of removing the ability to land as a critical hit.

• Additive effects - All previously additive effects will be changed to be multiplicative
so that damage calculation is more intuitive.

• Fixed and variable proportionality - The fixed and variable damage portions were
calculated differently for certain abilities as described in section 4.2; they removed
this calculation in the beta so all abilities are handled the same.

• Natural critical hits - The transition to necromancy mechanics largely covers this,
but we wanted to reiterate that under the new framework, natural critical hits will
no longer exist, and all styles will use the necromancy system discussed in section 6.

13 Acknowledgements

This work was a collaborative effort between community members of RS Analysis, The
RuneScape Math Discord, and the PvM Encyclopedia. Many of the foundations of our
understanding of the RuneScape combat system comes from the contributions of countless
players over the lifetime of the game. We thank the RuneScape Wiki and all of the
contributors for providing information about the detail of the combat system and its
intricacies. We want to give particular recognition to Mod Sponge, Mod Ryan, Mod Pi,
and others at Jagex for answering a seemingly endless amount of questions throughout
our research. In addition, the work of Ryyhen and Gamedolf on the creation of YARB
is largely one of the reasons why we started this project and we thank them for sharing
their code with us to use as a resource.

27

References

[1] Richard Bellman. “The theory of dynamic programming”. In: Bulletin of the
American Mathematical Society 60.6 (1954), pp. 503–515.

[2] David M. Bradley and Ramesh C. Gupta. In: Annals of the Institute of Statis-
tical Mathematics 54.3 (2002), pp. 689–700. issn: 0020-3157. doi: 10.1023/a:
1022483715767. url: http://dx.doi.org/10.1023/A:1022483715767.

[3] Julio Deride, Johannes O. Royset, and Fernanda Urrea. “A variational ap-
proach to a cumulative distribution function estimation problem under stochas-
tic ambiguity”. 2023. arXiv: 2309.00070 [math.OC].

[4] David Draper and Erdong Guo. “The Practical Scope of the Central Limit
Theorem”. 2021. arXiv: 2111.12267 [stat.OT].

[5] “EVOLUTION OF COMBAT: NOW LIVE!”. [Online; accessed 16-August-
2023]. 2012. url: https : // secure . runescape . com/m=news/evolution - of -
combat-now-live.

[6] Tran Loc Hung. “Classical and non-classical central limit theorems for random
sums of independent random variables of a double sequence”. 2023. arXiv:
2307.16570 [math.PR].

[7] Vijay Konda and John Tsitsiklis. “Actor-Critic Algorithms”. In: Advances
in Neural Information Processing Systems. Ed. by S. Solla, T. Leen, and K.
Müller. Vol. 12. MIT Press, 1999. url: https : / / proceedings . neurips . cc /
paper files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf.

[8] Lutz Mattner and Bero Roos. “Maximal probabilities of convolution powers
of discrete uniform distributions”. 2007. arXiv: 0706.0843 [math.PR].

[9] Sfox. “Hurricane, Explanation of Hurricane hits - The RuneScape Wiki”. [On-
line; accessed 26-November-2023]. 2023. url: https : // runescape .wiki /w/
Hurricane.

[10] Sfox. “Seren Godbow, Special attack - The RuneScape Wiki”. [Online; ac-
cessed 26-November-2023]. 2023. url: https : / / runescape .wiki /w /Seren
godbow.

[11] Sfox. “Snapshot, Explanation of arrow damages - The RuneScape Wiki”.
[Online; accessed 1-December-2023]. 2023. url: https://runescape.wiki/w/
Snap Shot.

[12] Nancy L. Stokey, Robert E. Lucas, and Edward C. Prescott. “Recursive Meth-
ods in Economic Dynamics”. Harvard University Press, 1989. isbn: 9780674750968.
url: http://www.jstor.org/stable/j.ctvjnrt76.

[13] Richard S Sutton et al. “Policy Gradient Methods for Reinforcement Learning
with Function Approximation”. In: Advances in Neural Information Process-
ing Systems. Ed. by S. Solla, T. Leen, and K. Müller. Vol. 12. MIT Press,
1999. url: https : //proceedings . neurips . cc /paper files /paper/1999/file /
464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf.

28

https://doi.org/10.1023/a:1022483715767
https://doi.org/10.1023/a:1022483715767
http://dx.doi.org/10.1023/A:1022483715767
https://arxiv.org/abs/2309.00070
https://arxiv.org/abs/2111.12267
https://secure.runescape.com/m=news/evolution-of-combat-now-live
https://secure.runescape.com/m=news/evolution-of-combat-now-live
https://arxiv.org/abs/2307.16570
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://arxiv.org/abs/0706.0843
https://runescape.wiki/w/Hurricane
https://runescape.wiki/w/Hurricane
https://runescape.wiki/w/Seren_godbow
https://runescape.wiki/w/Seren_godbow
https://runescape.wiki/w/Snap_Shot
https://runescape.wiki/w/Snap_Shot
http://www.jstor.org/stable/j.ctvjnrt76
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1999/file/464d828b85b0bed98e80ade0a5c43b0f-Paper.pdf

[14] Veggie and Jagex Sponge. “Unpublished discussion”. [Discord conversation in
the PvM Encyclopedia]. 2023.

29

	Introduction
	Basic Combat Mechanics
	The Combat Triangle
	Necromancy

	The Ability Damage Conjecture
	Dissecting ability damage
	Ability damage equations

	Iterations of Damage Calculation
	On-Cast
	On-Hit
	Damage per Level (DPL)
	Invention perks

	On-Npc

	Forced Auto-attacks
	Critical Strikes
	Ability Oddities
	Corruption Blast/Shot Damage Over Time
	Tendrils: Smoke, Shadow, Blood
	Crystal Rain (Seren Godbow Special Attack)
	Bash
	Deadshot and Massacre
	Greater Ricochet
	Snap Shot
	Hurricane
	Perfect Equilibrium (Bow of the Last Guardian Passive)
	Bleeds and Burns
	Shatter

	Statistical Understanding of Damage Values
	Damage as Expected Value
	Variance and standard deviation
	Distributions of Single-Hit Abilities
	Distributions of Non-Deterministic Multiple-Hit Abilities

	Approximating Damage Distributions
	Gaussian Characteristics in Infinitely Long Rotations
	Evaluating Convergence with Moments

	Comparative Rotation Analysis
	Continuous case
	Discrete case

	The Dynamic Programming Approach
	The Bellman Equation for Deterministic Sequences
	Stochastic Markov Decision Processes
	Policy Iteration
	Policy Gradients
	Hypothetical Implementation

	Conclusions
	Impending changes

	Acknowledgements

